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If every n-dimensional subspace of X* is the range of a projection of norm less
than C, then every subspace of X with codimension n is the range of a projection
having norm less than 1 + C. Also, projection constants of finite-dimensional
spaces are determined by finite-dimensional superspaces. It is further demonstrated
that spheres cannot, in general, be nicely embedded into unit balls of finite­
dimensional spaces.

This note is primarily concerned with the solution of some problems,
stated in the paper of Cheney and Price [1], on projections of finite rank
(that is, having finite-dimensional range) in Banach spaces. We see in
Section I that a sphere cannot always be embedded nicely into the unit ball
of a finite-dimensional space: In particular, ifh ,h , and fa are in l~) and
if for x in [is), {h(X)2 +h(X)2 + fa(x)2}l/2 )0 II x II, we must have II/; II > I
for some i. This gives a negative solution to part of problem 6 of [I].

The "principle of local reflexivity" of Lindenstrauss and Rosenthal [7] is
extended, in the second section, to show that finite rank projections on a con­
jugate space x* are, in a certain sense, near adjoints of finite rank projections
on X. From this one easily deduces that if every n-dimensional subspace of
X* is complemented with norm < Cn , then every subspace of X having
deficiency n is complemented with norm < I + Cn (this gives an affirmative
solution to problem 8 of [1]). From an unpublished result of Kadec to the
effect that every n-dimensional subspace of every Banach space is comple­
mented with norm < n1/ 2, it follows that if Y has deficiency n in x and if
E > 0, there is a projection of norm < I + n1 /2 + E of X onto Y. This
result and the result of Kadec together with its proof, occur in [2].

Finally, the "compactness argument" of Lindenstrauss (see e.g. [6]) is
applied directly to show that if Y is a finite-dimensional subspace of X and
if P is a "best" (in terms of norm) projection of X onto Y, then II P II =
sup II R II where the sup is over all "best" projections of Z onto Y, Z is
finite-dimensional and Y C Z C X. This answers problem 9 of [l].
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1

We show that, in general, spheres cannot be efficiently inscribed in unit
balls of finite-dimensional spaces. Suppose that X is an n-dimensional space
with norm II . II. Suppose that there exist functionals fl ,... , fn in the ball of
X*(Bx .) such that

I n /1/2
L~/j(X)2\ = II x 112 ~ II x II

for every x in X. There must be a vector Xk in n~~l.i# ker(li) such that
fixk) = 1 = II Xk 112 ~ II Xk II. Since Ilfk II ~ 1, it follows that II Xk II = Ilfk II = 1
for k = 1,2,... , nand thatli(xj) = 8u . The system (Xi ;fi) is called a normal
basis for X and must satisfy the condition that SP{XI ,... , Xk-l , Xk+l ,... , x n }

is parallel to the supporting hyperplane to Bx at Xk (that is, Uk(X) = I}).
We are now able to show that the ball of /i3) has no such inscribed sphere.

THEOREM 1. If{II ,h ,f3} are in

and

for every x in 113
), then lifi II > 1 for some i.

Proof Suppose that there is a normal basis (as above) with II x 112 ~ II x II
always. Then, notice that Xi = (ail, ai2 , ai3) must have I au I different from
zero for each i, j. This is due to the fact that since {II x 112 = I} is tangent to
Bx at Xl' x 2 and X3 and since {II x 112 = I} C Bx these are smooth points of the
ball of W). We may as well assume that an, a12' and a13 are all positive.
Then fl = (l, 1, 1). Since (Xi; Ii) is a normal basis, we can conclude that
a2l + a22+ a23 = a3l + a32 + a33 = O. For definiteness, assume that a 2l > 0,
a22 > 0 and a23 < 0 (the argument will apply to all legitimate choices of
sign for the ai/s). This condition forces f2 = (1, 1, -1). In turn,
a3l + a32 - a33 = 0, so that a33 = O. This is impossible in our situation,
and proves the theorem.

2

Let us recall some elementary facts and notation which will be used here.
If R is a finite rank projection on X, then R: X ~ X and R* is a finite rank
projection on X*. If {Xl"'" X n } are in X, then [Xl"'" X n ] is to denote the
linear span the x;'s in X. If T is a map from X to Yand W is a subspace of X
denote the norm of T I W by II T Ilw .
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Theorem 2 below is a modification of the "principle of local reflexivity"
of Lindenstrauss and Rosenthal [7]. The author has recently learned that
similar versions of this principle occur in [4] and [5]. One change in the
proof is the use of the following lemma (suggested to the author by
J. Daneman) instead of the separation lemma of Klee [3].

LEMMA. Let Cl , ... , Cn be open convex subsets 01 a Banach space X, and
suppose nCf* has a nonempty core. Then nCi =1= 0. (For a set A in X, ;tw*
denotes its weak* closure in X**).

Proof By induction, first consider n = 2 (the case n = 1 is trivial and
the second case provides the proof of the lemma). Suppose Cl () C2 = 0

so there is an I in x* and a scalar ex such that f(Cl) < ex <f(C2), then,
f(Cr*) ~ ex ~f(Cr). Let l:Jf in x** be such that l:Jf(f) = 1. Since there is a
core point rp of ct () Cr, there is a > 0 such that I ,\ I < a implies rp + '\l:Jf
is in Cf' () C~*. This is incompatible with (rp + ,\l:Jf)(f) = ex for all such '\,
giving the desired contradiction. Now, assuming the conclusion for n - 1,
let Cl , , Cn satisfy the hypotheses so that 0 =1= D = n~ C j • Let rp E core
C~* () () C~* and rp ¢ 15w*. Then there is an I in X* such that rp(f) > 1
and fed) ~ 1 for all d in D. However, letting Bi = Ci () {x If(x) > I} for
i = 2, 3, ... , n, we see that the hypotheses for the case n - I apply to give
o =1= n: B j C D which is a contradiction. Thus core C~* () ... () C~* C 15w*
so that Cr' () 15w* has a core. Now apply the argument for n = 2 to the
pair Cl , D to see that 0 =1= Cl () D = n;=l Cj •

THEOREM 2. Let P be a finite rank projection on X* and let E > O. Let
V be any finite-dimensional subspace 01 X*. Then there is a finite rank pro­
jection R on X such that R*(X*) = P(X*), II P - R* Ilv < E and II R II <
IIPII + E.

Proof Let
n

PI = L rpi(f)Ii
i=l

with

where {rpl ,... , rpn} C X**. Next choose {In+l ,... ,Im} in [rpl ,... , rpnlL so that
{It ,...,fm} is a basis for sp{1t ,... ,fn, V} = [/1 ,... ,fn, V]. Now for a > 0
and 'TJ > 0 (to be determined later), let {Pi I 1 ~ i ~ p} be a a-net on the
unit sphere of [rpl ,... , rpn] in X**. Define the following open convex subsets
of xn(= X x ... x X), for i = 1, 2,... ,p:
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D = l(xl , ... , x n) 1ft lfi(xi) - 8ii I < 1Jj.
( 0=1,=1

Let Kt* and D** be the similarly defined subsets of (x**)n. Then D** is a
weak*-open set contw.ning (If!l ,..., If!n) and Kt* is strongly open, containing
(If!l ,..., If!n). It follows easily (as in [7; proof of Theor. 3.1]) that Kf' ~ Kt*,
and 15w* ~ D**. The hypotheses of the lemma are now satisfied for the
p + 1 sets Kl , ... , K1J , D. Therefore, there is some (Xl"'" Xn) in X n common
to all of these sets. Now define T: [If!l ,..., If!n] -----+ [Xl'"'' Xn] as the linear
extension of Tlf!i = Xi ; i = 1,... , n. Let ifJ E [If!l ,... , If!n] have norm one, let
ifJi satisfy II ifJ - ifJi II < 8 and suppose II TifJ II = II T II. Then

Now, II T(ifJi)II = II L. ifJi(fi) Xi II < 1 + 8 since (Xl'"'' Xn) is in Ki . It follows
from these inequalities that II T II ~ (1 + 8)/(1 - 8). (This argument is similar
to the same norm estimate in [7].) Since (Xl'"'' Xn) is in D it follows that
the matrix B = (fixi) I i = 1,... , n; j = 1,... , n) is invertible for 'YJ < I
(using the Neumann series). Let A = (au) be its inverse so that
A = L. (I - B)k. Now set Yi = L.~l aijxi and let Ll be the linear extension
of LlXi = Yi to all of [Xl"'" x n ]. It is easy to see that.fi(Yi) = 8u . Now we
estimate the norm of Ll. Let W = I;fi(W)Yi' Then

II W - Ll-l(W)11 = II INW)(Yi - Xi) II ~ II WII I 11fi 1111 Yi - Xi II,

~ C.~l I 8u - aii llifi 1111 Xi II) II WII,

~ (( 1 ~ 7J ) II Til i.tl IIfi III1lf!i II) II W II,

~ (( 1 ~ 'YJ )( ~ ~ ~) i.~l lifi 1I11lf!i II) II WII,

~ (2 (1 ~ ).f lifi 1111lf!i II) 11 WII, for 0 < 8 :(; t·
1J >.i-l
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Therefore, for any K E (0, 1) there exists 'YJo > °such that 0 < 'YJ < 'YJo implies
II W- LI-I(W)II < KII WII. Thus, LI = L (1 - LI-I)i so II Llil ~ (l - K)-I.
Now we define Ru = Lh(u) Yt . If J is the canonical map from X to X**,
one verifies directly that R = LI TP*J, so that

II R II ~ (1/(1 - K»«1 + 8)/(1 - 8» II P II.

By choosing 'YJ and 8 small we get II R II ~ II P II + E. Further, it is clear that
R*X* = PX*. Now to check the final assertion,

II (R* - P) f ex;/; II = II. ~ ex;R*/; II = Ii .~ ex; I/;(Yt)h II,
i=1 i=n+1 i=n+1 t=1

and the first term (being smaller than 'YJ) approaches 0 as 'YJ - 0 for each
L:I exi/; . By choosing 'YJ smaller if necessary, the conclusion follows.

COROLLARY. If every n-dimensional subspace of x* is complemented with
norm < Kn , then every subspace of X having deficiency n is complemented
with norm < 1 + Kn .

Proof Let U = [h ,... , fnL.. , P: X* - [fl ,..., fn] having norm < Kn and
E < Kn - II P II. If R is the projection of the theorem, then (I - R)X =
(R*X*)..L = U and II 1 - R II ~ 1 + II R II ~ 1 + II P II + E < 1 + Kn •

This gives an affirmative solution to Problem 8 of [1].
Kadec has recently shown the following (see [2]): If Y is an n-dimensional

subspace of (any Banach space) X, then there is a projection of X onto Y
with norm ~ nl / 2• This allows the following refinement of Theorem 6 of [1].
(This result also appears in [2]).

COROLLARY. If Y has deficiency n in X, and if E > 0 there is a projection
of norm < 1 + nl

/
2 + E of X onto Y.

It is not known whether every Banach space has "nicely" complemented
subspaces ofarbitrarily large finite dimension. That is, given X, does there exist
a constant M such that for every n there is a subspace U of X having dimen­
sion ): n and complemented with norm ~ M. The next corollary says that
one may as well restrict his attention to conjugate spaces in studying this
question.
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COROLLARY. If, for X*, there is a constant M and subspaces Vn of x*
with dim Vn ~ n complemented with norm ~ M, then X contains subspaces
Un with dim Un ~ n and complemented with norm ~ M.

We must remark that if a finite-dimensional subspace is complemented
with norm ~ M + E for every E > 0, then it is complemented with norm
~M.

3

The following is a direct application of the Lindenstrauss "compactness
argument" (see e.g. [6]).

THEOREM 3. Let X be an n-dimensional subspace of a Banach space Z and
let P be a projection of least norm of Z onto X. Then II P II = SUPR II R II where
R ranges over all "minimum norm" projections from W to X, W finite-dimen­
sional, XC we z.

Proof Let &iI C 2Z be the collection of all finite-dimensional superspaces
of X partially ordered by inclusion. For each B E &ii, let PB be a best (in terms
of norm) projection of B onto X and extend PB to all of Z by setting PBz = 0
if Z E Z\B. By the Kadec result above, it follows that II PBz II ~ (dim X)1/211 Z II
for every Z E Z. Now let

W = nnil Z II Bx
ZEZ

which is compact in the product topology since X is n-dimensional. The net
(PB(Z»ZEZ is in W, and thus has a convergent subnet, say (Pe(z». Thus,
PcCz) converges in X for each Z in Z. It is clear that, defining P: Z --+ X by
pz = lim PeZ, P is bounded and Px = x for all x in X. Also, for Zl , Z2 E Z,
and all C -:J [Zl , Z2 , Xl, Pc(rxZl + (3Z2) = rxPe(Zl) + (3Pe(Z2), so P is linear.
Further II PZ II ~ {lime II Pc II} II Z II giving the desired result.

Let X be n-dimensional. For any superspace W of X let P(X, W) be the
norm of the best projection of W onto X. Define

Pm(X) = sup{P(X, W) Idim W = m},

P(X) = sup{P(X, W) I W -:J X}.

The affirmative solution to problem 9 of [1] is

COROLLARY. P(X) = sup Pm(X),
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