Remarks on Finite Rank Projections

William J. Davis
Department of Mathematics, Ohio State University, Columbus, Ohio 43210
Communicated by E. W. Cheney

Received November 25, 1970

Abstract

If every n-dimensional subspace of X^{*} is the range of a projection of norm less than C, then every subspace of X with codimension n is the range of a projection having norm less than $1+C$. Also, projection constants of finite-dimensional spaces are determined by finite-dimensional superspaces. It is further demonstrated that spheres cannot, in general, be nicely embedded into unit balls of finitedimensional spaces.

This note is primarily concerned with the solution of some problems, stated in the paper of Cheney and Price [1], on projections of finite rank (that is, having finite-dimensional range) in Banach spaces. We see in Section 1 that a sphere cannot always be embedded nicely into the unit ball of a finite-dimensional space: In particular, if f_{1}, f_{2}, and f_{3} are in $l_{\infty}^{(3)}$ and if for x in $l_{1}^{(3)},\left\{f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}\right\}^{1 / 2} \geqslant\|x\|$, we must have $\left\|f_{i}\right\|>1$ for some i. This gives a negative solution to part of problem 6 of [1].

The "principle of local reflexivity" of Lindenstrauss and Rosenthal [7] is extended, in the second section, to show that finite rank projections on a conjugate space X^{*} are, in a certain sense, near adjoints of finite rank projections on X. From this one easily deduces that if every n-dimensional subspace of X^{*} is complemented with norm $<c_{n}$, then every subspace of X having deficiency n is complemented with norm $<1+c_{n}$ (this gives an affirmative solution to problem 8 of [1]). From an unpublished result of Kadec to the effect that every n-dimensional subspace of every Banach space is complemented with norm $\leqslant n^{1 / 2}$, it follows that if Y has deficiency n in x and if $\epsilon>0$, there is a projection of norm $<1+n^{1 / 2}+\epsilon$ of X onto Y. This result and the result of Kadec together with its proof, occur in [2].

Finally, the "compactness argument" of Lindenstrauss (see e.g. [6]) is applied directly to show that if Y is a finite-dimensional subspace of X and if P is a "best" (in terms of norm) projection of X onto Y, then $\|P\|=$ $\sup \|R\|$ where the sup is over all "best" projections of Z onto Y, Z is finite-dimensional and $Y \subset Z \subset X$. This answers problem 9 of [1].

We show that, in general, spheres cannot be efficiently inscribed in unit balls of finite-dimensional spaces. Suppose that X is an n-dimensional space with norm $\|\cdot\|$. Suppose that there exist functionals f_{1}, \ldots, f_{n} in the ball of $X^{*}\left(B_{X^{*}}\right)$ such that

$$
\left\{\sum_{j=1}^{n} f_{j}(x)^{2}\right\}^{1 / 2}=\|x\|_{2} \geqslant\|x\|
$$

for every x in X. There must be a vector x_{k} in $\bigcap_{i=1, i \neq k}^{n} \operatorname{ker}\left(f_{i}\right)$ such that $f_{k}\left(x_{k}\right)=1=\left\|x_{k}\right\|_{2} \geqslant\left\|x_{k}\right\|$. Since $\left\|f_{k}\right\| \leqslant 1$, it follows that $\left\|x_{k}\right\|=\left\|f_{k}\right\|=1$ for $k=1,2, \ldots, n$ and that $f_{i}\left(x_{j}\right)=\delta_{i j}$. The system $\left(x_{i} ; f_{i}\right)$ is called a normal basis for X and must satisfy the condition that $\operatorname{sp}\left\{x_{1}, \ldots, x_{k-1}, x_{k+1}, \ldots, x_{n}\right\}$ is parallel to the supporting hyperplane to B_{X} at x_{k} (that is, $\left\{f_{k}(x)=1\right\}$).

We are now able to show that the ball of $l_{1}^{(3)}$ has no such inscribed sphere.
Theorem 1. If $\left\{f_{1}, f_{2}, f_{3}\right\}$ are in

$$
l_{\infty}^{(3)}\left(=\left(l_{1}^{(33}\right)^{*}\right) \quad \text { and } \quad\left\{f_{1}(x)^{2}+f_{2}(x)^{2}+f_{3}(x)^{2}\right\}^{1 / 2} \geqslant\|x\|
$$

for every x in $l_{1}^{(3)}$, then $\left\|f_{i}\right\|>1$ for some i.
Proof. Suppose that there is a normal basis (as above) with $\|x\|_{2} \geqslant\|x\|$ always. Then, notice that $x_{i}=\left(a_{i 1}, a_{i 2}, a_{i 3}\right)$ must have $\left|a_{i j}\right|$ different from zero for each i, j. This is due to the fact that since $\left\{\|x\|_{2}=1\right\}$ is tangent to B_{X} at x_{1}, x_{2} and x_{3} and since $\left\{\|x\|_{2}=1\right\} \subset B_{X}$ these are smooth points of the ball of $l_{1}^{(3)}$. We may as well assume that a_{11}, a_{12}, and a_{13} are all positive. Then $f_{1}=(1,1,1)$. Since $\left(x_{i} ; f_{i}\right)$ is a normal basis, we can conclude that $a_{21}+a_{22}+a_{23}=a_{31}+a_{32}+a_{33}=0$. For definiteness, assume that $a_{21}>0$, $a_{22}>0$ and $a_{23}<0$ (the argument will apply to all legitimate choices of sign for the $a_{i j}$'s). This condition forces $f_{2}=(1,1,-1)$. In turn, $a_{31}+a_{32}-a_{33}=0$, so that $a_{33}=0$. This is impossible in our situation, and proves the theorem.

2

Let us recall some elementary facts and notation which will be used here. If R is a finite rank projection on X, then $R: X \rightarrow X$ and R^{*} is a finite rank projection on X^{*}. If $\left\{x_{1}, \ldots, x_{n}\right\}$ are in X, then $\left[x_{1}, \ldots, x_{n}\right]$ is to denote the linear span the x_{i} 's in X. If T is a map from X to Y and W is a subspace of X denote the norm of $T \mid W$ by $\|T\|_{W}$.

Theorem 2 below is a modification of the "principle of local reflexivity" of Lindenstrauss and Rosenthal [7]. The author has recently learned that similar versions of this principle occur in [4] and [5]. One change in the proof is the use of the following lemma (suggested to the author by J. Daneman) instead of the separation lemma of Klee [3].

Lemma. Let C_{1}, \ldots, C_{n} be open convex subsets of a Banach space X, and suppose $\cap \bar{C}_{i}^{u^{*}}$ has a nonempty core. Then $\cap C_{i} \neq \varnothing$. (For a set A in $X, \bar{A}^{w^{*}}$ denotes its weak* closure in $X^{* *}$).

Proof. By induction, first consider $n=2$ (the case $n=1$ is trivial and the second case provides the proof of the lemma). Suppose $C_{1} \cap C_{2}=\varnothing$ so there is an f in X^{*} and a scalar α such that $f\left(C_{1}\right)<\alpha<f\left(C_{2}\right)$, then, $f\left(\bar{C}_{1}^{n *}\right) \leqslant \alpha \leqslant f\left(\bar{C}_{2}^{w^{*}}\right)$. Let Ψ in $X^{* *}$ be such that $\Psi(f)=1$. Since there is a core point φ of $\bar{C}_{1}^{w^{*}} \cap \bar{C}_{2}^{w^{*}}$, there is $\delta>0$ such that $|\lambda|<\delta$ implies $\varphi+\lambda \Psi$ is in $\bar{C}_{1}^{u^{*}} \cap \bar{C}_{2}^{\nu^{*}}$. This is incompatible with $(\varphi+\lambda \Psi)(f)=\alpha$ for all such λ, giving the desired contradiction. Now, assuming the conclusion for $n-1$, let C_{1}, \ldots, C_{n} satisfy the hypotheses so that $\varnothing \neq D=\bigcap_{2}^{n} C_{j}$. Let $\varphi \in$ core $\bar{C}_{2}^{v^{*}} \cap \cdots \cap \bar{C}_{n}^{w^{*}}$ and $\varphi \notin \bar{D}^{w^{*}}$. Then there is an f in X^{*} such that $\varphi(f)>1$ and $f(d) \leqslant 1$ for all d in D. However, letting $B_{i}=C_{i} \cap\{x \mid f(x)>1\}$ for $i=2,3, \ldots, n$, we see that the hypotheses for the case $n-1$ apply to give $\varnothing \neq \bigcap_{2}^{n} B_{j} \subset D$ which is a contradiction. Thus core $\bar{C}_{2}^{w^{*}} \cap \cdots \cap \bar{C}_{n}^{w^{*}} \subset \bar{D}^{w^{*}}$ so that $\bar{C}_{1}^{w^{*}} \cap \bar{D}^{w^{*}}$ has a core. Now apply the argument for $n=2$ to the pair C_{1}, D to see that $\varnothing \neq C_{1} \cap D=\bigcap_{j=1}^{n} C_{j}$.

Theorem 2. Let P be a finite rank projection on X^{*} and let $\epsilon>0$. Let V be any finite-dimensional subspace of X^{*}. Then there is a finite rank projection R on X such that $R^{*}\left(X^{*}\right)=P\left(X^{*}\right),\left\|P-R^{*}\right\|_{V}<\epsilon$ and $\|R\|<$ $\|P\|+\epsilon$.

Proof. Let

$$
P f=\sum_{i=1}^{n} \varphi_{i}(f) f_{i} \quad \text { with } \quad \varphi_{i}\left(f_{j}\right)=\delta_{i j}
$$

where $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \subset X^{* *}$. Next choose $\left\{f_{n+1}, \ldots, f_{n}\right\}$ in $\left[\varphi_{1}, \ldots, \varphi_{n}\right]_{\perp}$ so that $\left\{f_{1}, \ldots, f_{m}\right\}$ is a basis for $\operatorname{sp}\left\{f_{1}, \ldots, f_{n}, V\right\}=\left[f_{1}, \ldots, f_{n}, V\right]$. Now for $\delta>0$ and $\eta>0$ (to be determined later), let $\left\{\Psi_{i} \mid 1 \leqslant i \leqslant p\right\}$ be a δ-net on the unit sphere of $\left[\varphi_{1}, \ldots, \varphi_{n}\right]$ in $X^{* *}$. Define the following open convex subsets of $X^{n}(=X \times \cdots \times X)$, for $i=1,2, \ldots, p$:

$$
K_{i}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid\left\|\sum_{j=1}^{n} \Psi_{i}\left(f_{j}\right) x_{j}\right\|<1+\delta\right\}
$$

and

$$
D=\left\{\left(x_{1}, \ldots, x_{n}\right)\left|\sum_{i=1}^{m} \sum_{j=1}^{n}\right| f_{i}\left(x_{j}\right)-\delta_{i j} \mid<\eta\right\}
$$

Let $K_{i}^{* *}$ and $D^{* *}$ be the similarly defined subsets of $\left(X^{* *}\right)^{n}$. Then $D^{* *}$ is a weak ${ }^{*}$-open set containing ($\varphi_{1}, \ldots, \varphi_{n}$) and $K_{i}^{* *}$ is strongly open, containing ($\varphi_{1}, \ldots, \varphi_{n}$). It follows easily (as in [7; proof of Theor. 3.1]) that $\bar{K}_{i}^{w^{*}} \supset K_{i}^{* *}$, and $\bar{D}^{w^{*}} \supset D^{* *}$. The hypotheses of the lemma are now satisfied for the $p+1$ sets K_{1}, \ldots, K_{p}, D. Therefore, there is some $\left(x_{1}, \ldots, x_{n}\right)$ in X^{n} common to all of these sets. Now define $T:\left[\varphi_{1}, \ldots, \varphi_{n}\right] \rightarrow\left[x_{1}, \ldots, x_{n}\right]$ as the linear extension of $T \varphi_{i}=x_{i} ; i=1, \ldots, n$. Let $\psi \in\left[\varphi_{1}, \ldots, \varphi_{n}\right]$ have norm one, let ψ_{j} satisfy $\left\|\psi-\psi_{j}\right\|<\delta$ and suppose $\|T \psi\|=\|T\|$. Then

$$
\|T\| \leqslant\left\|T\left(\psi_{j}\right)\right\|+\|T\|\left\|\psi-\psi_{j}\right\|
$$

Now, $\left\|T\left(\psi_{j}\right)\right\|=\left\|\sum \psi_{j}\left(f_{i}\right) x_{i}\right\|<1+\delta$ since $\left(x_{1}, \ldots, x_{n}\right)$ is in K_{j}. It follows from these inequalities that $\|T\| \leqslant(1+\delta) /(1-\delta)$. (This argument is similar to the same norm estimate in [7].) Since (x_{1}, \ldots, x_{n}) is in D it follows that the matrix $B=\left(f_{j}\left(x_{i}\right) \mid i=1, \ldots, n ; j=1, \ldots, n\right)$ is invertible for $\eta<1$ (using the Neumann series). Let $A=\left(a_{i j}\right)$ be its inverse so that $A=\sum(I-B)^{k}$. Now set $y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}$ and let Δ be the linear extension of $\Delta x_{i}=y_{i}$ to all of $\left[x_{1}, \ldots, x_{n}\right]$. It is easy to see that $f_{i}\left(y_{j}\right)=\delta_{i j}$. Now we estimate the norm of Δ. Let $W=\sum f_{i}(W) y_{i}$. Then

$$
\begin{aligned}
& \left\|W-\Delta^{-1}(W)\right\|=\left\|\sum f_{i}(W)\left(y_{i}-x_{i}\right)\right\| \leqslant\|W\| \sum\left\|f_{i}\right\|\left\|y_{i}-x_{i}\right\| \\
& \begin{array}{l}
\left(\sum_{i=1}^{n}\left\|f_{i}\right\|\left\|\left(\sum_{j=1}^{n} \delta_{i j}-a_{i j}\right) x_{j}\right\|\right)\|W\| \\
\quad \leqslant\left(\sum_{i, j=1}^{n}\left|\delta_{i j}-a_{i j}\right|\left\|f_{i}\right\|\left\|x_{j}\right\|\right)\|W\| \\
\quad \leqslant\left(\left(\frac{\eta}{1-\eta}\right)\|T\| \sum_{i, j=1}^{n}\left\|f_{i}\right\|\left\|\varphi_{j}\right\|\right)\|W\|, \\
\quad \leqslant\left(\left(\frac{\eta}{1-\eta}\right)\left(\frac{1+\delta}{1-\delta}\right) \sum_{i, j=1}^{n}\left\|f_{i}\right\|\left\|\varphi_{j}\right\|\right)\|W\|, \\
\quad \leqslant \\
\quad\left(2\left(\frac{\eta}{1-\eta}\right) \sum_{i, j=1}^{n}\left\|f_{i}\right\|\left\|\varphi_{j}\right\|\right)\|W\|, \quad \text { for } \quad 0<\delta \leqslant \frac{1}{2}
\end{array}
\end{aligned}
$$

Therefore, for any $K \in(0,1)$ there exists $\eta_{0}>0$ such that $0<\eta<\eta_{0}$ implies $\left\|W-\Delta^{-1}(W)\right\|<K\|W\|$. Thus, $\Delta=\sum\left(I-\Delta^{-1}\right)^{i}$ so $\|\Delta\| \leqslant(1-K)^{-1}$. Now we define $R u=\sum f_{i}(u) y_{i}$. If J is the canonical map from X to $X^{* *}$, one verifies directly that $R=\Delta T P^{*} J$, so that

$$
\|R\| \leqslant(1 /(1-K))((1+\delta) /(1-\delta))\|P\| .
$$

By choosing η and δ small we get $\|R\| \leqslant\|P\|+\epsilon$. Further, it is clear that $R^{*} X^{*}=P X^{*}$. Now to check the final assertion,

$$
\begin{aligned}
\left\|\left(R^{*}-P\right) \sum_{j=1}^{m} \alpha_{j} f_{j}\right\| & =\left\|\sum_{j=n+1}^{m} \alpha_{j} R^{*} f_{j}\right\|=\left\|\sum_{j=n+1}^{m} \alpha_{j} \sum_{i=1}^{n} f_{j}\left(y_{i}\right) f_{i}\right\| \\
& =\left\|\sum_{j=n+1}^{m} \sum_{i=1}^{n} \sum_{k=1}^{n} \alpha_{j} a_{i k} f_{j}\left(x_{k}\right) f_{i}\right\| \\
& \leqslant\left(\sum_{j=n+1}^{m} \sum_{k=1}^{n}\left|f_{j}\left(x_{k}\right)\right|\right) \sum\left|\alpha_{j}\right| \sum\left|a_{i k}\right| \sum\left\|f_{i}\right\|
\end{aligned}
$$

and the first term (being smaller than η) approaches 0 as $\eta \rightarrow 0$ for each $\sum_{j=1}^{m} \alpha_{j} f_{j}$. By choosing η smaller if necessary, the conclusion follows.

Corollary. If every n-dimensional subspace of X^{*} is complemented with norm $<K_{n}$, then every subspace of X having deficiency n is complemented with norm $<1+K_{n}$.
Proof. Let $U=\left[f_{1}, \ldots, f_{n}\right]_{\perp}, P: X^{*} \rightarrow\left[f_{1}, \ldots, f_{n}\right]$ having norm $<K_{n}$ and $\epsilon<K_{n}-\|P\|$. If R is the projection of the theorem, then $(I-R) X=$ $\left(R^{*} X^{*}\right)_{\perp}=U$ and $\|I-R\| \leqslant 1+\|R\| \leqslant 1+\|P\|+\epsilon<1+K_{n}$.

This gives an affirmative solution to Problem 8 of [1].
Kadec has recently shown the following (see [2]): If Y is an n-dimensional subspace of (any Banach space) X, then there is a projection of X onto Y with norm $\leqslant n^{1 / 2}$. This allows the following refinement of Theorem 6 of [1]. (This result also appears in [2]).

Corollary. If Y has deficiency n in X, and if $\epsilon>0$ there is a projection of norm $<1+n^{1 / 2}+\epsilon$ of X onto Y.

It is not known whether every Banach space has "nicely" complemented subspaces of arbitrarily large finite dimension. That is, given X, does there exist a constant M such that for every n there is a subspace U of X having dimension $\geqslant n$ and complemented with norm $\leqslant M$. The next corollary says that one may as well restrict his attention to conjugate spaces in studying this question.

Corollary. If, for X^{*}, there is a constant M and subspaces V_{n} of X^{*} with $\operatorname{dim} V_{n} \geqslant n$ complemented with norm $\leqslant M$, then X contains subspaces U_{n} with $\operatorname{dim} U_{n} \geqslant n$ and complemented with norm $\leqslant M$.

We must remark that if a finite-dimensional subspace is complemented with norm $\leqslant M+\epsilon$ for every $\epsilon>0$, then it is complemented with norm $\leqslant M$.

3

The following is a direct application of the Lindenstrauss "compactness argument" (see e.g. [6]).

Theorem 3. Let X be an n-dimensional subspace of a Banach space Z and let P be a projection of least norm of Z onto X. Then $\|P\|=\sup _{R}\|R\|$ where R ranges over all "minimum norm" projections from W to X, W finite-dimensional, $X \subset W \subset Z$.

Proof. Let $\mathscr{B} \subset 2^{Z}$ be the collection of all finite-dimensional superspaces of X partially ordered by inclusion. For each $B \in \mathscr{B}$, let P_{B} be a best (in terms of norm) projection of B onto X and extend P_{B} to all of Z by setting $P_{B} z=0$ if $z \in Z \backslash B$. By the Kadec result above, it follows that $\left\|P_{B} z\right\| \leqslant(\operatorname{dim} X)^{1 / 2}\|z\|$ for every $z \in Z$. Now let

$$
W=\prod_{z \in Z} n\|z\| B_{X}
$$

which is compact in the product topology since X is n-dimensional. The net $\left(P_{B}(z)\right)_{z \in Z}$ is in W, and thus has a convergent subnet, say $\left(P_{C}(z)\right)$. Thus, $P_{C}(z)$ converges in X for each z in Z. It is clear that, defining $P: Z \rightarrow X$ by $P z=\lim P_{C} z, P$ is bounded and $P x=x$ for all x in X. Also, for $z_{1}, z_{2} \in Z$, and all $C \supset\left[z_{1}, z_{2}, X\right], P_{c}\left(\alpha z_{1}+\beta z_{2}\right)=\alpha P_{C}\left(z_{1}\right)+\beta P_{C}\left(z_{2}\right)$, so P is linear. Further $\|P z\| \leqslant\left\{\lim _{C}\left\|P_{C}\right\|\right\}\|z\|$ giving the desired result.

Let X be n-dimensional. For any superspace W of X let $P(X, W)$ be the norm of the best projection of W onto X. Define

$$
\begin{aligned}
P_{m}(X) & =\sup \{P(X, W) \mid \operatorname{dim} W=m\} \\
P(X) & =\sup \{P(X, W) \mid W \supset X\}
\end{aligned}
$$

The affirmative solution to problem 9 of [1] is
Corollary. $\quad P(X)=\sup P_{m}(X)$.

References

1. E. W. Cheney and K. H. Price, "Minimal projections," Approximation Theory (A. Talbot, Ed.), pp. 261-289, Academic Press, New York, 1970.
2. D. J. H. Garling and Y. Gordon, "Relations between some constants associated with finite dimensional Banach spaces," Is. J. Math. 9 (1971), 346-361.
3. V. L. Klee, "On certain intersection properties of convex sets," Canad. J. Math. 3 (1951), 272-275.
4. W. B. Johnson, "On the existence of strongly series summable Markushevich bases in Banach spaces," Trans. A. M. S. 157 (1971), 481-486.
5. W. B. Johnson, H. P. Rosenthal, and M. Zippin, "On bases finite dimensional decompositions and weaker structures in Banach spaces," Is. J. Math. 9 (1971), 488-506.
6. J. Lindenstrauss, "On nonlinear projections in Banach spaces," Michigan Math. J. (1964), 263-287.
7. J. Lindenstrauss and H. P. Rosenthal, "The \mathscr{L}_{p} spaces," Israel J. Math. 7 (1969), 325-349.
